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Circuit components sometimes burn out suddenly, which belongs to a class of critical 
phenomena covered by macroscopic kinetics [i]. Semenov [2] pointed out the existence of 
electrical analogs of chemical explosion with reference to thermal breakdown in insulators. 
A conductor carrying a current differs from an insulator when considered as a localized case 
of energy release in not having explosive instability. The explosive instability effect 
arises when one incorporates the distributed nature of the system and the scope for spatial 
perturbation. Then breakdown can be treated as local evaporation of the conductor because 
of spontaneous sharpening in the temperature inhomogeneity. 

i. We consider a resistance filament thermally insulated at the ends, whose ends have 
applied a constant potential difference U. The heat-balance equation for the filament in a 
chemically inert medium is 

aT u2p 2= (T  - -  To) - -  20. I a [ ~ ar~, ( 1 .  i )  

in which x is the longitudinal coordinate, T and T o the temperatures of the filament and the 
surrounding medium, c the specific heat of unit volume, r radius, s length, p(T) resistivity, 
k thermal conductivity, ~ heat-transfer coefficient, and o radiation constant. 

When the current source is switched on, the filament's temperature rises rapidly to Ts, 
which remains stationary if we neglect the slow filament evaporation; T s is defined by 

5 '2 2a , 2~ T ~ 
- -  r ( T s - - T o )  n - r  8. (1 .2 )  

to (T D F 

To examine the stability of the homogeneous stationary solution, we examine the evolution 
of small temperature perturbations. The nonstationary solution T(x, t) is sought as the sum 

T(x,  O =  T o +  0 ( t ) f ( x ) .  

We s u b s t i t u t e  T ( x ,  t )  i n t o  ( 1 . 1 )  and  l i n e a r i z e  a l l  t h e  t e r m s  t o  g e t  

z 

aO [,:2 2U 2 ~ [~ 2a 80"  ~ . 
' ~O&x  c ~ / (x) - p,z'~ R r 0 l  (x) - -  ~ RTt~ J f (x) d x  - -  T O/(x)  - -  7 T~O/. (x) -~ (x) 

o (1 .3 )  
(08 = P (Ts), BT = (a in  plaT)r~). 

F o r  h o m o g e n e o u s  p e r t u r b a t i o n s  ( f  = 1 ) ,  ( 1 . 3 )  i s  p u t  a s  

ao r o 2a 80 ] C ~ - - - - - - 0 , - - : ~ o , , T - [ - - ; - + - - T s  3 �9 ( 1 . 4 )  [ p~z- r J 
The solutions to (1.4) are damped exponentials, i.e., the high-temperature state in the heat- 
ing filament considered as a uniform object is stable. 

With spatial perturbations 

] ( x )  = c o s  (~nx/l) 

t h e  e q u a t i o n  f o r  t h e  a m p l i t u d e  0 ( t )  i s  

O0 U2BT 20: 8~Tas n~n2~ 
c ~  = AO, A---- p f  r r F" ( 1 . 5 )  

For A > 0, the amplitude of the perturbations increases exponentially: 
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0 = Oo exp (Qt), fl = A / c .  

The first mode (n = i) is the most hazardous, and short-wave perturbations are damped out 
because of the stabilizing action of the thermal conduction. We see from (1.5) that the 
physical reason for the instability is the temperature coefficient of resistivity, which 
under conditions of fixed U may lead to progressive localization of the energy deposition. 

The condition A = 0 defines critical values for the characteristics corresponding to 
failure of the stationary homogeneous solution, which needs to be considered together with 
(1.2). If T s is not too high, one can neglect radiation losses, and for a sufficiently long 
filament (~ ~ /~2rl/2a), one can also neglect the thermal-conduction term. Then we get the 
expressions for the critical filament temperature T,, voltage U,, and current density j, as 

T. = T0~-RF 1, U~ = 2p(T.)  l ~ a / r R T ,  ]~ = 2 a / r p R T .  ( 1 . 6 )  

Here R T i s  g o v e r n e d  by t h e  t e m p e r a t u r e  dependence  o f  t h e  r e s i s t i v i t y .  I n  g e n e r a l ,  t h e  tem- 
p e r a t u r e  c o e f f i c i e n t  R T i s  n o t  c o n s t a n t ,  so t h e  f i r s t  o f  t h e  e x p r e s s i o n s  in  ( 1 . 6 )  s h o u l d  be 
c o n s i d e r e d  as an e q u a t i o n  f o r  t he  c r i t i c a l  t e m p e r a t u r e  T , ,  whose s o l u t i o n  e x i s t s  o n l y  f o r  
s u f f i c i e n t l y  r a p i d  i n c r e a s e  in  p(T) (more r a p i d  t h a n  l i n e a r ) .  With a weaker  d e p e n d e n c e ,  t h e  
s t a t i o n a r y  homogeneous s t a t e  o f  t h e  c u r r e n t - c a r r y i n g  c o n d u c t o r  i s  a b s o l u t e l y  s t a b l e .  I n c o r -  
p o r a t i n g  t h e  r a d i a t i o n  s t r e n g t h e n s  t h e  r e q u i r e m e n t  f o r  i n c r e a s e  in  p(T) t o  o b t a i n  t h e  r u n -  
away. For most  m e t a l s ,  p(T) i s  f a i r l y  weak o v e r  a wide t e m p e r a t u r e  r a n g e  bu t  s h a r p e n s  con-  
s i d e r a b l y  as T a p p r o a c h e s  t h e  m e l t i n g  p o i n t .  T y p i c a l  examples  a r e  c o p p e r  and s i l v e r  [ 3 ] .  
In  t h a t  c a s e ,  t h e  s t a t i o n a r y  s t a t e  b r e a k s  down and t h e  f i l a m e n t  bu rns  o u t  n e a r  t h e  m e l t i n g  
p o i n t  o f  t h e  m e t a l .  S u b s t a n t i a l l y  lower  T,  may o c c u r  in  s e m i c o n d u c t o r  t h e r m i s t o r s  w i t h  p o s i -  
t i v e  t e m p e r a t u r e  c o e f f i c i e n t s ,  and a l s o  in  c e r t a i n  m e t a l s .  F i g u r e  1 shows R T f o r  n i c k e l  [ 3 ] .  
The i n t e r s e c t i o n  be tween R T and t h e  (T - 293) -1 c u r v e  in  a c c o r d a n c e  w i t h  ( 1 . 6 )  d e f i n e s  t h e  
maximum t e m p e r a t u r e  o f  t h e  s t a b l e  homogeneous s t a t i o n a r y  s t a t e :  T ,  = 428 K f o r  T O = 293 K. 

A t t e m p t s  t o  h e a t  a n i c k e l  f i l a m e n t  t o  T s > T,  s h o u l d  l e a d  t o  d i s r u p t i o n  o f  t h e  homo- 
geneous  t e m p e r a t u r e  d i s t r i b u t i o n  and a u t o l o c a l i z a t i o n  o f  t h e  J o u l e  e n e r g y  d e p o s i t i o n  n e a r  
the point of maximum temperature. 

The critical temperature T.0. is uniquely determined by the material characteristic R T 
only for a long thin filament (s ~ /~2rI/2~). As ~ decreases, T, increases because of the 
stabilizing action of the thermal conduction, which suppresses the temperature inhomogenei- 
ties. A sufficiently short conductor (s ~ /~=Xr/2~) may be considered as a localized energy 
deposition object stable against temperature perturbations. If two or more such resistances 
are joined in series with weak thermal contact, it is readily shown that the system loses 
its stability on heating: T s - T o > R@ I. 

2. For small RT, the homogeneous high-temperature state is stable (T, > T s) and the 
filament lifetime is governed by evaporation. When evaporation is incorporated, (i.i) is 
supplemented with the kinetic equation 

Or/Ot = - w ( T ) ,  w = ko exp ( - E / R T ) ,  ( 2 . 1  ) 

in  which w i s  t h e  e v a p o r a t i o n  r a t e ,  k 0 t h e  p r e e x p o n e n t i a l f a c t o r ,  E t h e  a c t i v a t i o n  e n e r g y ,  and R 
t h e  gas c o n s t a n t .  The h e a t  l o s s  by e v a p o r a t i o n  can be n e g l e c t e d  i n  ( 1 . 1 )  b e c a u s e  even  a t  
h i g h  T we f i n d  t h a t  w i s  s m a l l  and c o r r e s p o n d i n g l y  t h e  e n e r g y  c o n s u m p t i o n  i s  n e g l i g i b l e  by 
c o m p a r i s o n  w i t h  t h e  e l e c t r i c a l  power i n p u t .  The r a t i o  o f  t h e  t h e r m a l  r e l a x a t i o n  t ime  to  t h e  
c h a r a c t e r i s t i c  e v a p o r a t i o n  t ime  i s  s m a l l ,  so t h e  e v a p o r a t i o n  can be c o n s i d e r e d  as q u a s i -  
s t a t i o n a r y .  The q u a s i s t a t i o n a r y  v a l u e s  o f  t h e  f i l a m e n t  r a d i u s  r s ( t )  and t e m p e r a t u r e  T s ( r s )  
a r e  r e l a t e d  by ( 1 . 2 ) .  The h e a t - t r a n s f e r  c o e f f i c i e n t  i s  d e p e n d e n t  on t h e  r a d i u s  (a  = X1/r  , 
X~ = NuXr /2  , w i t h  X r t h e  t h e r m a l  c o n d u c t i v i t y  o f  t h e  s u r r o u n d i n g  medium and Nu t h e  N u s s e l t  
number ) ,  w i t h  t h e  r e l a t i o n s h i p  d e f i n e d  by 

r~ = ~ [ i  + I + j .  ( 2 . 2 )  

The (2.1) evaporation kinetic equation governs rs(t) and Ts(t) with it. The reduction in 
filament thickness reduces the temperature [the p(T) dependence can be neglected for these 
small RT]. As T s falls, so does the evaporation rate, and the retardation in w for large E 
such as are characteristic of real systems occurs very rapidly. As T s approaches To, w falls 
almost to zero, so on a real-time scale, the evaporation will continue indefinitely. 

This evaporation scenario may not occur because the quasistationary solution is unstable 
under small perturbations. We seek the nonstationary temperature distribution corresponding 
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to the perturbed solution as the quasistationary component and a small correction dependent 
on time and the coordinate: 

T(x,  t )=  r~ ( t )§  O(t)](x).  (2 .3 )  

The perturbation in the radius corresponding to the variation 5T is found from (2.1): 

t 

r = r~ (t) --  F (t) f (x), F (t) = ~ (aw/aT)T~ 0 (t) dr. ( 2 . 4 )  
0 

We s u b s t i t u t e  ( 2 . 2 ) - ( 2 . 4 )  i n to  (1 .1 )  and r e t a i n  only  terms of  the  f i r s t  o rde r  of  smal lness  
to get an equation defining the evolution of perturbations in the quasistationary solution: 

) 4~ (r~ -- to) aO 4U2F(t) l ] ( x ) - -  I f ( x ) d x  - -  ( t) l(x)  
c] (x) -~ -~ 13r------ ~ -  "o 1 r~ F - -  

~.1 o (t) ] (z) - r~ (t) f (x) =z- e (t) f (z) + ~,o 
'. r2 s rs x-J ax2 .  

For f (x )  = 1, a l l  t he  terms on the  r i g h t  a re  n e g a t i v e ,  i . e . ,  homogeneous p e r t u r b a t i o n s  a re  
damped. For harmonic p e r t u r b a t i o n s ,  

(2.5) 

] (x) = cos (znx/Z) 
(2.5) for @(t) becomes 

aO 2 [U 2 aT: iF( t )__O[23"  ~ 8~ = ~ l  

The quasistationary temperature T s is a single-valued function of time: 

- - =  ( dr, ~--, dr,dt - w (r,) \~-~:1 
and can be used as an independent variable instead of t. The sharply nonlinear w(T s) depen- 
dence means that the new variable should best be taken as the dimensionless temperature 
measured in the characteristic intervals RT2/E: 

T = ( T , - -  Tr)E/RT2r, T r =  T,(ri). 
The reference temperature T r corresponds to the initial filament radius ri, and (2.6) becomes 

+O[r-~--}--~--= q- l~ j ,  r ~ - - d r  ", T,=Tr(lq-~'), [ ~ = R T r / E .  (2.7) 

The evaporation activation energy for a metal is hundreds of kJ per mole, so $ is small. 
For example, ~ ~ 2.10 -2 for tungsten at T r = 2.10 3 K. As ~ is small, we can neglect the 
changes in all quantities of the order of $ in (2.7). A similar technique, including the 
method of choosing the dimensionless temperature, is used efficiently in the theory of thermal 
explosion [4]. In the small 8 approximation [Ts(~) z T r, rs(~) z ri] , (2.7) becomes 
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,g 

dO [ 0 dr  + 50, e exp (T) ~ = ~p. 
0 

r} ~ ( T  To) t + )~1 ( r r - -  To) = ~ ( r r )  R ~  2~1~ i 
4aT~r i ~2n2)~r~ , 

5 ---- t -{-- t~--  -+" 2~1l - - - - - T '  r i = ( d r J d T ~ ) T r .  

( 2 . 8 )  

Parameters ~ and 6 (of the order of one) characterize the contributions from the individual 
forms of heat transfer to the heat balance. The value of e is defined by the product of 
three quantities: 

(~)  (rii 4)~_1 ' cr~ ~= ~ ~ ,  t ~ = ~ ,  t~= (~). 

The first of the cofactors is the ratio of the thermal relaxation time t r to the time of 
complete isothermal evaporation te, which is a measure of how far the process is quasista- 
tionary. In real situations, this ratio is very small, e.g., the lifetime of a tungsten 
heating filament is thousands of hours, while the thermal relaxation time is of the order of a 
second, so E is close to zero although ~-i is large. 

That circumstance can be used to construct an approximate solution. We neglect the 
term in (2.8) proportional to s to get 

01 = a, exp (--r 

T h a t  s o l u t i o n  a p p l i e s  t h r o u g h o u t  t h e  r a n g e  i n  ~ a p a r t  f r o m  a n a r r o w  b o u n d i n g  r a n g e  n e a r  < = 0 ,  
! 

where the derivative 8~ ~ r Within the boundary layer, one can neglect the integral term 
in (2.8), which is proportional to the width of the interval h~ ~ e: 

0 2 = a 2 e x p  [ S e - l ( l - - e x p ( - - x ) ) ] .  

We represent the complete solution to (2.8) as the sum of 81 and 82: 

0 = al exp [--q0~/6] + a2 exp [6e -1 ( t  -- exp ( - -~))  ]. ( 2 . 9  ) 

E q u a t i o n  ( 2 . 8 )  i s  l i n e a r  i n  O, so  we c a n  c o n s i d e r  t h e  r e l a t i v e  c h a n g e  i n  O n o r m a l i z e d  t o  t h e  
initial value of the perturbation amplitude. Then 

0(0)=t ,  a 2 = l - a , .  
We substitute (2.9) into (2.8) and neglect the less-significant terms in the asymptotic ex- 
pression (E § 0) to get 

a, = q~el6 2. 

The numerical solution to (2.8) corresponds well to the approximate one for small ~. Figure 
2 shows 8(<) calculated for g = 10-i-10 -3 , ~ = i, 6 = 1 (the approximate and exact solutions 
do not differ on the scale of the figure). In the initial stage, the perturbation amplitude 
decreases rapidly because of the joint effects of heat transfer and thermal conduction, but 
subsequently a destabilizing effect occurs from the integral perturbation in the power pro- 
duction, and 8 increases without limit. 

The instant when the initial value of 8 is regained can be taken as the induction period, 
which defines the filament lifetime t,. The mean filament temperature during the induction 
period is reduced by T, in the characteristic intervals RT~/E. We put 8 = i in (2.9) and 
neglect the second term on the right because e is small to get 

T . = 6 ~  -~In(62/~s) ,  T , =  T r ( t - g T , ) .  

With ~ and 6 of the order of one, which corresponds to a long thin filament, the reduction 
in the mean temperature and thickness preceding the sharpening in the local inhomogeneities 
is relatively slight even with small ~. As the length ~ decreases (6 increases), the burn-up 
of the filament and the drop in T s after the induction period are increased. 

The induction time is calculated from T, via (2.1): 

T ~  

t ,  = - -  ( r s / w ) d T s ,  rs = d r s /dTs .  
T r 
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Asymptotic calculation of the integral for small ~ gives 

t, = ~,.~ (rr/ri) ~ (62/~) ~/~, te = q/w (rr). 

The induction period t, shortens more rapidly as T r increases than does the isothermal evap- 
oration time re: 

t , N  N exp [ E ( I  + 

The e f f e c t i v e  a c t i v a t i o n  e n e r g y  f o r  t h e  e v a p o r a t i o n  i s  E ,  = E ( l  + 6 ~  -x)  and i s  d e p e n d e n t  on 
t h e  l e n g t h  o f  t h e  f i l a m e n t ,  which gove rns  6. For  a f i x e d  Tr ,  t h e  l i f e t i m e  i n c r e a s e s  r a p i d l y  
as  t h e  f i l a m e n t  s h o r t e n s ,  which  i s  due t o  t h e  t h e r m a l  c o n d u c t i o n ,  which  s u p p r e s s e s  t h e  g rowth  
of  t e m p e r a t u r e  i n h o m o g e n e i t i e s  in  a s h o r t  f i l a m e n t .  

Th i s  c a l c u l a t i o n  has  been p e r f o r m e d  w i t h  t h e  Thomson t h e r m o e l e c t r i c  e f f e c t  n e g l e c t e d .  
To e v a l u a t e  t h e  p a r a m e t e r  r a n g e  p e r m i t t i n g  t h a t  a p p r o x i m a t i o n ,  we c o n s i d e r  t h e  r a t i o  o f  t h e  
q u a n t i t i e s  Qk = Xd2T/dx 2 and Qs = s j d T / d x ,  which  gove rn  t h e  power in  t h e  d i s s i p a t i v e  and 
Thomson s o u r c e s  as a p p e a r i n g  in  t h e  h e a t - b a l a n c e  e q u a t i o n  (s  i s  t h e  Thomson c o e f f i c i e n t ,  
w h i l e  j = U/p~ i s  t h e  c u r r e n t  d e n s i t y ) .  We t a k e  QX ~ ~AT/~ 2, Qs ~ sUhT/~2P to  g e t  Qs/QX ~ 
U(s /pA) .  Here s /p~  f o r  c o n d u c t o r s  does  no t  exceed  5 .10  -5 V -1 ,  so f o r  U up t o  t h e  l e v e l  o f  
s e v e r a l  kV, Qs/QX i s  n e g l i g i b l y  s m a l l .  

There  i s  e x p e r i m e n t a l  e v i d e n c e  f o r  t h e  l a c k  o f  e f f e c t  f rom t h e  Thomson t h e r m o e l e c t r i c  
e f f e c t  f rom t h e  c o i n c i d e n c e  be tween t h e  c r i t i c a l  c h a r a c t e r i s t i c s  ( T , ,  j , ,  U, ,  t , )  f o r  d i r e c t  
and a l t e r n a t i n g  c u r r e n t s .  

The a u t h o r  i s  i n d e b t e d  t o  E. N. Rumanov f o r  a d i s c u s s i o n .  
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FLOW PAST A SLIM BODY OF REVOLUTION OF A STATIONARY SUPERSONIC FLOW 

OF A VIBRATIONALLY EXCITED GAS UNDER A SMALL ANGLE OF ATTACK 

A. N. Bogdanov and V. A. Kulikovskii UDC 533.6.01 

The flow past a body under an angle of attack is of interest within the context of the 
problem of stability of motion of a body in a gas medium. In ordinary gas dynamics the solu- 
tion of this problem within the slim body approximation is discussed in [i]. The variability 
of parameters of flow past the body, generated, for example, by nonequilibrium processes in 
the gas, may substantially affect the aerodynamic characteristics of the body. 

In the present study we consider flow past a slim body of revolution of a vibrationally 
excited gas at a small angle of attack. The solution obtained makes it possible to calculate 
the transverse force acting on the body, as well as the torque of this force with respect to 
the tip of the body. It seems that relaxation of vibrational excitation leads to a change 
in value, and for a sufficient amount of initial nonequilibrium - even a change of sign of 
the transverse force. The transverse force also acts on a pointed body (without a rounded 
slice), while in ordinary gas dynamics the linear theory provides a vanishing transverse 

force [I]. 

To investigate this problem the symmetry axis of the body of revolution is conveniently 
chosen to coincide with the x axis, and the stationary supersonic flow, unperturbed by the 
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